Витамин стимулирует синтез в печени ферментов

Витамин стимулирует синтез в печени ферментов

Реферат

по дисциплине: «Биохимия»

на тему: Роль витаминов в построении коферментов

Санкт-Петербург

2016

Витамины (от латинского Vita — жизнь) — необходимые для нормальной жизнедеятельности низкомолекулярные органические соединения с высокой биологической активностью, которые не синтезируются (или синтезируются в недостаточном количестве) в организме и поступают в организм с пищей. Содержание витаминов в продуктах, однако, значительно ниже, чем основных нутриентов — белков, жиров и углеводов, и не превышает, как правило, 10-100 мг/100 г продукта.

Витамины, участвующие в биохимических процессах, являются предшественниками коферментов (например витамин В1) или собственно коферментами (например липоамид).

Коферменты – органические природные соединения небелковой природы, необходимые для осуществления каталитического действия ферментов. Коферменты вместе с функциональными группами аминокислотных остатков фермента формируют активный центр фермента, на котором происходит связывание с субстратом и образование активированного фермент-субстратного комплекса.

Некоторые витамины обеспечивают осуществление физиологических процессов, например: витамин А2 участвует в процессе зрительного восприятия; витамин А3 – в процессе дифференцировки клеток; витамин D – в процессе формирования костной ткани; витамин Е – антиоксидант. Известно более 20 соединений, которые могут быть отнесены к витаминам.

Наряду с витаминами, необходимость которых для человека и животных бесспорно установлена, в пище содержатся биологически активные вещества, которые по своим функциям ближе не к витаминам, а к другим незаменимым пищевым веществам. Эти вещества называют витаминоподобными. К ним обычно относят биофлавоноиды, холин, инозит, оротовую, пангамовую и пара-аминобензойную кислоты, полиненасыщенные жирные кислоты и др.

Соединения, которые не являются витаминами, но могут служить предшественниками их образования в организме, называются провитаминами. К ним относятся, например, каротины, расщепляющиеся в организме с образованием витамина А, и некоторые стерины (эргостерин, 7-дегидрохолестерин и др.), превращающиеся в витамин D.

Витамины классифицируют по их растворимости, а именно различают водорастворимые (гидрофильные) и жирорастворимые (липофильные) витамины. Биологическая роль водорастворимых витаминов определяется их участием в построении различных коферментов. Биологическая ценность жирорастворимых витаминов в значительной мере связана с их участием в контроле функционального состояния мембран клетки и субклеточных структур. Необходимость водо- и жирорастворимых витаминов для нормального течения различных биологических процессов предопределяет развитие выраженных нарушений деятельности органов и систем при дефиците любого из витаминов.

С момента открытия первых витаминов и до настоящего времени используется буквенная классификация.

витамин растворимость кофермент биохимический

Классификация витаминов

Жирорастворимые витамины

Витамин А

Физиологические эффекты витамина А весьма разнообразны: стимуляция процессов роста, участие в окислительных процессах (активация молекулярного кислорода), обмене нуклеиновых кислот, белков, углеводов, холестерина, влияние на функции желез внутренней секреции (щитовидная, надпочечники), стимуляция иммунитета, процессов темновой адаптации (необходим для ресинтеза зрительного пурпура — родопсина).Витамин А обеспечивает процессы регенерации покровного, железистого эпителия кожи, эпителия слизистой оболочки верхних дыхательных путей, мочевыводящих путей, желудочно-кишечного тракта.

Витамин D (кальциферолы)

Витамин D оказывает влияние на внутриклеточные окислительные процессы, минеральный обмен, в первую очередь кальциево-фосфорный (поддерживает постоянный уровень кальция и фосфора в крови, улучшает его всасывание в кишечнике, реабсорбцию фосфора в канальцах почек).Кроме того, витамин D оказывает влияние на эндокринные железы (гипофиз, надпочечники, щитовидная железа, паращитовидная железа), обмен холестерина. Витамин D влияет на содержание фосфатазы (превращает органические фосфаты в ионы неорганического фосфора) в крови, которая играет важную роль в кальцификации костей, обогащении костей фосфорными радикалами и в образовании нерастворимого фосфата кальция. При недостаточности витамина D в тяжелых случаях развивается рахит, при котором нарушается образование костей (страдает превращение хрящевой ткани в костную, снижается количество кальция и фосфора в костях, недостаточно кальцифицируется остеоидный матрикс), рост зубов, поражаются мышцы, нарушается общее состояние организма, страдают нервная и сердечно-сосудистая системы, желудочно-кишечный тракт.

Витамин Е (токоферолы)

Защищает в организме ненасыщенные жирные кислоты и витамин А от окисления (природный антиоксидант).

Витамин К

Синтезируется микрофлорой кишечника. Применение витамина К рекомендуется при различных формах геморрагического синдрома, легочных, маточных, паренхиматозных кровотечениях, пневмониях, заболеваниях печени, хронических поражениях желудка, в хирургической практике (в частности при подготовке к операции).

Водорастворимые витамины

Тиамин (витамин B1)

Оказывает благотворное действие на клеточное дыхание, процессы ассимиляции, обмен веществ, углеводный, жировой, белковый, минеральный обмен, сердечно-сосудистую систему и органы пищеварения, функцию нервной системы, в том числе на нервную трофику (питание).

Рибофлавин (витамин B2)

Активно участвует в обмене веществ: окислительно-восстановительных процессах, клеточном дыхании, окислении углеводов, молочной кислоты, альдегидов, обмене жиров, порфиринов, синтезе белков, окислительном дезаминировании аминокислот. Необходим для обеспечения роста. Рибофлавин оказывает регулярующее действие на функцию ЦНС, особенно ее вегетативного отдела, стимулирует эритропоэз (генерацию новых клеток крови — эритроцитов), регулирует функции печени, благоприятно влияет на сетчатку глаза и пр.

Пиридоксин (витамин B6)

Участвует в белковом и жировом обмене, реакциях переаминирования и декарбоксилирования аминокислот, переносе сульфгидрильных групп, обмене триптофана, гистидина, метионина, цистина, окислении и синтезе жира, стимулирует использование организмом ненасыщенных жирных кислот. Может синтезироваться бактериальной флорой кишечника.

Цианокобаламин (витамин B12)

Играет важную роль в процессах гемопоэза (кроветворения), регуляции эритропоэза (созревании эритроцитов), вместе с фолиевой кислотой участвует в белковом обмене — синтезе метильных групп, образовании метионина, холина. Кроме того, вместе с фолиевой кислотой витамин B12 участвует в синтезе нуклеиновых кислот, способствует ассимиляции аминокислот и их лучшему использованию клетками. Витамин B12способствует превращению в организме каротина в витамин А и его отложению в тканях. Синтезируется в толстой кишке.

Аскорбиновая кислота (витамин С)

Принимает участие в окислительно-восстановительных реакциях, в обеспечении нормального течения белкового, углеводного и жирового обмена. Под действием витамина С органы обогащаются гликогеном, в крови повышается количество пирвиноградной кислоты, мелкодисперстных белков, окисление тирозина, регулируется содержание полипептидов и холестерина. Он благотворно влияет на ассимиляторно-диссимиляторные процессы в клетке, регенерацию аморфного склеивающего вещества эндотелия капилляров, на регулярование проницаемости капилляров и образование коллагена. Оказывает влияние на иммуно-биологические реакции организма.

Витамин С стимулирует образование антител, повышает фагоцитарную активность крови, пролиферацию ретикулоэндотелиальных элементов, предотвращает возникновение или смягчает течение анафилактического шока. Витамин С оказывает благоприятное влияние на антитоксическую функцию печени, стимулирует внешнесекреторную функцию поджелудочной железы, образование протромбина, эритропоэз, фильтрационную способность почек и др.

Витамин Р (биофлавоноиды, полифенолы)

Вещества с Р-витаминным действием — природные соединения, так называемые полифенолы, наряду с аскорбиновой кислотой обеспечивают нормальную проницаемость капилляров, регенерацию их аморфного склеивающего вещества. Под влиянием соединений, обладающих Р-витаминным действием, понижается артериальное давление крови, замедляется ритм сердца, увеличивается его минутный объем, повышается диурез, желчевыведение, увеличивается содержание кальция в сыворотке крови, усиливается тканевое дыхание, уменьшается гипоксия, снижается повышенная функция щитовидной железы и др. Биологический эффект витамина Р тесно связан с аскорбиновой кислотой. Витамин Р способствует усвоению витамина С.

Витамин РР (ниацин, никотиновая кислота)

Широко участвует в разнообразных процессах обмена веществ (окислительно-восстановительные процессы, регуляция углеводного обмена, соотношение между содержанием в организме никотиновой кислоты и использованием организмом пищевого белка, обмен холестерина, обмен железа и т.п.).

Никотиновая кислота влияет на функциональное состояние ЦНС, сердечно-сосудистой системы (играют роль сосудорасширяющие ее свойства — понижение артериального и понижение венозного давления), органов пищеварения (повышение секреторной и моторной функций желудка, стимуляция внешнесекреторной функции поджелудочной железы, благоприятное влияние на функции печени), систему кроветворения [стимуляция костного мозга, эритропоэза (синтеза эритроцитов крови)], усиливает действие инсулина, меркузала, дигиталиса и пр.

Фолацин (фолиевая кислота)

Содержится в листьях растений, дрожжах, печени, почках. Участвует в процессах гемопоэза (кроветворения). Она необходима для регуляции эритропоэза (синтеза эритроцитов крови), тромбоцитопоэза (генерации тромбоцитов) и особенно лейкопоэза (образование лейкоцитов крови), оказывает стимулирующее влияние на синтез белков (катализатор синтеза аминокислот). Синтезируется в организме.

Пантотеновая кислота (витамин B3)

Важна при расщеплении жиров, углеводов и аминокислот, а также для синтеза жизненно важных жирных кислот и некоторых гормонов. Синтезируется микрофлорой кишечника.

Биотин (витамин Н)

Важен при синтезе углеводов и жирных кислот. Синтезируется микрофлорой кишечника.

Коферменты (коэнзимы) – органические природные соединения, необходимые для осуществления каталитического действия ферментов. Коферменты выполняют функцию переносчиков электронов, атомов или функциональных групп с одного субстрата на другой. Ферментами называют белки, выполняющие в организмах

функции катализаторов химических реакций в клетках. Большинство ферментов состоят из белкового компонента (апофермента) и кофермента, имеющего сравнительно небольшую молекулярную массу. Коферменты вместе с функциональными группами аминокислотных остатков апофермента формируют активный центр фермента, на котором происходит связывание с субстратом и образование активированного фермент-субстратного комплекса. Сами по себе коферменты каталитически неактивны, так же, как и апоферменты без коферментов. Таким образом, образование комплекса апофермента с оферментом – один из способов регуляции активности фермента в организме.

Следует также иметь в виду, что в проявлении каталитического действия ферментов большую роль играют различные неорганические ионы, например К+, Zn2+, Mg2+ и др. В большинстве случаев катионы металлов взаимодействуют с апоферментной частью молекулы фермента, при этом структура фермента меняется таким образом, что собственно и формируется его активный центр. Такие ионы хотя и активируют фермент, но не входят в состав его активного центра. Известны ферменты, например карбоангидраза, в которых катионы металлов (в данном случае Zn2+) входят в состав активного центра. В любом случае такие неорганические ионы, необходимые для проявления каталитической активности ферментов, называют кофакторами.

Коферменты обладают как минимум двумя функциональными группами или реакционноспособными участками, обуславливающими специфическое связывание с апоферментом с одной стороны и с субстратом – с другой. Известны десятки органических соединений, выполняющих функции коферментов. Эти вещества, как правило, содержат системы сопряженных π-связей и (или) гетероатомы. Многие

коферменты включают в качестве структурного компонента остаток

молекулы витамина (коферментные формы витаминов).

По способам взаимодействия с апоферментом различают растворимые коферменты и простетические группы.

Растворимый кофермент присоединяется к молекуле фермента во

время реакции, химически изменяется и затем снова освобождается. Первоначальная форма растворимого кофермента регенерируется во второй,

независимой реакции. Поскольку такие же стадии взаимодействия проходит и субстрат, некоторые авторы называют растворимые коферменты косубстратами. Однако этот термин неоправдан, поскольку субстрат взаимодействует в реакции данного типа лишь с определенным ферментом (субстратная специфичность ферментов), в то время как растворимый кофермент взаимодействует с широким кругом ферментов данного класса. Простетической группой называют кофермент, который прочно связан с апоферментом (обычно ковалентными связями) и во время реакции постоянно находится в активном центре фермента. После освобождения субстрата регенерация простетической группы происходит при взаимодействии с другим коферментом или субстратом.

Все ферменты, катализирующие окислительно-восстановительные реакции, т.е. перенос восстановительных эквивалентов – протонов и (или) электронов (оксидоредуктазы), и все ферменты, катализирующие реакции переноса различных групп (трансферазы), нуждаются в коферментах. По этому признаку коферменты делятся на две группы – окислительно-восстановительные коферменты и коферменты переноса групп.

Знание функций витаминов позволяет понять причину возникновения различных патологических состояний, связанных с нарушением метаболизма веществ. Общим положением является то, что дефицит того или иного витамина приводит к снижению активности соответствующего фермента и, следовательно, к торможению соответствующей ферментативной реакции. Поскольку организм является сбалансированной саморегулирующейся системой, изменение метаболизма какого-либо вещества влечет за собой изменение обмена и других метаболитов. Наблюдаемые изменения организма в целом проявляются не сразу, поскольку организм в начальном этапе дефицита какого-либо витамина компенсирует возникшее отклонение, изменяя метаболизм других веществ так, чтобы снизить отрицательное влияние дефицита витамина (состояние гиповитаминоза). Если дефицит витамина устранен, организм возвращается в нормальное состояние. В том случае, если дефицит витамина большой и длится длительное время, возникает авитаминоз, и когда компенсаторные ресурсы организма исчерпаны наступает летальный исход.

Литература

В.А. СМИРНОВ, Ю.Н. КЛИМОЧКИН. ВИТАМИНЫ И КОФЕРМЕНТЫ

учебное пособие. Часть 2.- Самара Самарский государственный технический университет 2008

Полищук Д.А.. Значение витаминов в питании человека: Физкультура и спорт, 1984. — 240 с.



Источник: studfile.net


Добавить комментарий